
JBuddy COM/.NET
Getting Started Guide

Version 6.3

Copyright 2010 Zion Software, LLC. All Rights Reserved.

...1. Setup! 4
...1.1 System Requirements ! 4

...1.2 Installation Steps! 4

..1.3 Licensing! 4

..1.4 Further Help! 4

......2. Visual Studio integration for JBuddy COM/.NET! 5
..2.1 Add Reference ! 5

..........................3. Developing with JBuddy COM/.NET! 6
..3.1 General Concepts! 6

...3.2 Samples & Demos ! 7

...............4. JBuddy API for COM - API Documentation! 8
...4.1 Java and COM/.NET Methods! 8

..4.2 Java Fields / COM enums! 8

...4.2.1 StatusType! 8

...4.2.2 PrivacyType! 8

..4.2.3 BuddyListType! 9

..4.2.4 MessageFormatType! 9

...4.2.5 ProtocolType! 9

...4.2.6 MessageType! 9

...4.3 JBuddy, JBuddyClass! 9

..4.4 IClient, Client! 9

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved.

...4.5 IGateway ! 10

..4.6 Callbacks and Event Handling! 10

...4.7 Errors and Exceptions in COM! 10

...4.8 Troubleshooting! 10

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved.

1. Setup
Below are the basic instructions for developing instant messaging and presence (IM)
applications using COM and .NET development technologies and the JBuddy SDK as
quickly as possible.

1.1 System Requirements
• J2SE JRE v1.3.1+ (see http://www.java.com/)
• .NET Runtime if developing using .NET
• JBuddy*Installer.jar (Installer for JBuddy Developer Tools)

1.2 Installation Steps
I. Make sure a modern Java runtime (JRE 1.6+ recommended) is installed on your

machine. The Microsoft version of Java is not supported. If you lack a modern JRE, go
to http://www.java.com/ and follow the Download instructions.

II. Download the JBuddy*Installer.jar package and double click it to install. (If youʼre
reading this then chances are youʼve already completed both installation steps). If Java
has been successfully installed on your machine, the JBuddy*Installer.jar file will be
double clickable and a small language selection dialog box will appear. If you do not
see the dialog box, please minimize other windows on your screen (sometimes the
language prompt dialog does not come to the front above other windows).

III. Be sure to select the JBuddy COM/.NET Tools installation option which is enabled on
Windows platforms only.

1.3 Licensing
A free, limited use license is included with the JBuddy SDK. The license supports up to
three (3) concurrent IM chat sessions and up to three simultaneously connected IM clients.
A chat session is defined as a conversation between a buddy and an IM client connected
using the JBuddy SDK. The chat session ends automatically when fifteen (15) minutes of
time pass and no conversation takes place between the IM client connected by JBuddy
SDK and the other buddy. If you wish to raise the limits of the free, included license, please
contact Zion Software, LLC at http://www.zionsoftware.com/company/contact.html

1.4 Further Help
Further help may be obtained online at:
http://www.zionsoftware.com/support/ or within the forums at
http://www.zionsoftware.com/forums//

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 4

http://v1.3.1/
http://v1.3.1/
http://www.java.com/
http://www.java.com/
http://www.java.com
http://www.java.com
http://www.zionsoftware.com/company/contact.html
http://www.zionsoftware.com/company/contact.html
http://www.zionsoftware.com/support/
http://www.zionsoftware.com/support/
http://www.zionsoftware.com/forums/
http://www.zionsoftware.com/forums/

2. Visual Studio integration for JBuddy COM/.NET
Assuming you have successfully installed the JBuddy SDK with the JBuddy COM/.NET
Tools components, this ʻdeveloper tutorialʼ will describe how to get started using JBuddy
COM/.NET within Microsoftʼs Visual Studio IDE. General concepts from this tutorial are also
applicable to other languages and IDEs for the Microsoft platform.

2.1 Add Reference
The JBuddy*Installer.jar attempts to register the JBuddy.dll with Windows. It is possible that
security measures enabled within Windows could prevent this important step from
occurring. If this is the case, you will need to manually register the JBuddy.dll. This can be
done by right clicking on the JBuddy.dll and selecting the option to register the JBuddy.dll.
Once registered, the JBuddy component is now accessible from within the IDE. In Visual
Studio, click on the “Project” menu and then the “Add Reference…” sub menu. Once the
“Add Reference” dialog is opened, click on the “COM” tab and scroll down and select
“JBuddy SDK for COM & .NET”, then click OK. See Figure 1 below. This allows the IDE to
reference the JBuddy component which is natively a COM component. Visual Studio builds
an ʻinteropʼ wrapper so that JBuddy can be used with .NET languages including C#,
VB.NET and C++.

Figure 1 − Visual Studio 2008 Add Reference

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 5

3. Developing with JBuddy COM/.NET
After performing 2.1 Add Reference to make the JBuddy component available within the
IDE, we are ready to look at the major components and how to build a simple IM
application. The basic objects in JBuddy COM/.NET include JBuddyClass, Client/IClient,
IBuddy, IBuddyList and IMessage.

3.1 General Concepts
First we need to create an instance of the factory class, JBuddy. This will allow us to create
instances of IClient which are objects that represent users on the IM service. Once we have
an IClient instance, we can tell it to connect to the IM service. Once connected, we need to
wait for the handshake to complete so we wait for IClientʼs IsOnline() to return true. At this
point, we are connected and online. Anyone with this clientʼs screenname in their buddy list
should see you ʻonlineʼ. The IClient is now ready to send and receive instant messages
(IM) and presence with ʻbuddiesʼ on the IM service network.

Below is a snippet of C# code to illustrate how to obtain an instance of an IClient from the
JBuddy factory, connect to the IM service and then wait for the client to go ʻonlineʼ.
// get a handle on the Factory class
JBuddyClass jbuddy = new JBuddyClass();

// ask the Factory for a new iclient instance (a client for AIM with screenname and password).
Client client = (Client)jbuddy.ClientFactory(ProtocolType.PROTOCOL_AIM, screenname, password);

// register event handlers before going online so we don’t miss our events of interest
client.AdminMessage += new _IClientEvents_AdminMessageEventHandler (OnAdminMessage);
client.IncomingMessage += new _IClientEvents_IncomingMessageEventHandler (OnIncomingMessage);
client.IncomingBujddy += new _IClientEvents_IncomingBuddyEventHandler (OnIncomingBuddy);
client.ConnectionLost += new _IClientEvents_ConnectionLostEventHandler (OnConnectionLost);

// wait until client isOnline and ready for commands
while(client.IsOnline() == false)
! System.Threading.Thread.Sleep(1000);

//Once online, we can send and receive instant messages and presence.

// send an instant message
client.SendIM(“buddyname”,”Hello World “);

// Snippet of code below is the actual event handlers where we process the events
// we are interested in. Fill in the details…

private void OnAdminMessage(IMessage msg) {
 string sMsg = msg.Message; // admin message
}

private void OnIncomingMessage(IMessage msg) {
 string sMsg = msg.Message; // incoming message, now check the msg type
 MessageType type = msg.Type;
 if(type == MessageType.MESSAGE_TYPE_IM)
 Console.WriteLine(“OnIncomingMessage: “ + sMsg); // display Ims to the console
}

private void OnIncomingBuddy(IBuddy buddy) {
 // handle incoming buddy messages with presence
}

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 6

3.2 Samples & Demos
Inside the JBuddySDK\demos directory are small sample applications written in Java, VC+
+6, VB6, Excel (VBA), C#, and more. Notes on running the COM/.NET demos are given
below:

• All C# demos require the .NET Framework. See Microsoftʼs knowledge base article
http://support.microsoft.com/kb/318785 to determine if you have .NET framework
installed.

• CmdLineClientDemo (java, C#, and VC6) demos and TrivialSendApp (VC6) run from a
command window (run cmd) and require command-line parameters. In the case of C#
and VC6 demos, enter the *.exe executable without parameters to see the required
parameters. In the case of the CmdLineClientDemo for VC6, please see comments in
GetLine.h regarding an operating system bug that may make entering commands difficult.

• GUIClient (VB6, C#) presents a very simple graphical IM client using the JBuddy
COM/.NET API. The VB6 version requires three ocx system modules to fully work and
they must be installed before it will display a post-login window: comdlg32.ocx,
mscomctl.ocx, richtx32.ocx. These components should be readily available and installed
many graphical applications. The C# GUIClient demo requires a valid username and
password for an AIM account by editing the GUIClient.exe.config xml file. Replace
username and password with account authorization credentials for an AIM account. If you
wish to try a different IM network, you will need to edit the GUIClientForm.cs and replace
the reference to PROTOCOL_AIM with a different reference and then recompile.

• TicTacToeBot (C#) demo - please see the README.txt for the java demo of the same
name. The msgrp2p.xml file must be copied to the Live Messenger directory in order for
this demo and the java demo to work. Also, this demo must be built (compiled) before it
can be used. Finally, it requires a valid username and password for an MSN account by
editing the TicTacToeBot.exe.config xml file. Replace username and password with
account authorization credentials for an MSN/Windows Live Messenger account.

• JBuddyLoan (Microsoft Excel) demo runs as a VBScript Macro within Microsoft Excel and
therefore requires Excel to be installed. The spread sheet demo requires a username,
password and IM network to be specified and will signon to the IM network as a loan
amortization IM bot. This demo has been tested with Excel ʼ97 and may need adjustment
to work with newer versions of Microsoft Excel. Additinally, Macros must be enabled for
this demo to work.

• MFCSample (VC6) demo presents a very simple graphical IM window using MFC
technologies. The MFCSampleDlg.cpp file requires modification and a valid username
and password for an AIM account. Replace username and password with account
authorization credentials for an AIM account. If you wish to try a different IM network, you
will need to change PROTOCOL_AIM to a different network. This demo needs to be
compiled (built) before it can be used.

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 7

http://support.microsoft.com/kb/318785
http://support.microsoft.com/kb/318785

4. JBuddy API for COM - API Documentation
The JBuddy API for Java is documented as Javadoc html pages inside the JBuddySDK
\javadocs directory of your installation or online at
http://www.zionsoftware.com/support/jbuddy/sdk/javadocs/

There are however several notable differences between the JBuddy API for Java and for
COM. We shall refer to each simple as Java and COM for brevity. The differences will be
covered below.

4.1 Java and COM/.NET Methods
All of the methods defined in Java are defined with standard Java casing style (lowercase
letter first, then uppercase at each new word). COM methods on the other hand use
headline cased (uppercase letter begins each new word). For example, IClientʼs isOnline()
in Java is IsOnline() in COM. The description of the method in javadoc is the same for both
Java and COM. In addition, standard getter and setter methods in Java are available in
COM as properties. Read-only [get] properties in COM represent a method in Java where
only a getter method exists. For example, IBuddyʼs getName() method in Java is a read-
only property Name in COM and would be accessed as: string sName = buddy.Name; in
C#. A property that is read/write [get, set] in COM represents two methods in Java – a
getter and a setter. For example, IClientʼs getNickName() and setNickName(String
nickName) in Java are represented in COM as [get, set] NickName. Setting the NickName
of a client in C# would look like a typical assignment: client.NickName = “SuperMan”; If a
setMethod in Java takes more than one argument, then it will usually look the same in
COM with headline case since a [get, set] method is for getting or assigning one value only.
For example, IClientʼs getStatus() and setStatus(int status, String customerAwayMessage)
in Java is represented as a read-only [get] Status property AND a SetStatus(StatusType,
string) method in COM.

4.2 Java Fields / COM enums
All of the constants defined in Java are defined as enums within COM and grouped
according to their function and purpose. All the value names of the enums begin with the
name of the enum (minus the “Type”) in all CAPS_. These are described below:

 4.2.1 StatusType
IBuddy fields in Java represent status or presence for both buddies and clients. They are all
defined within the StatusType enum in COM. For example, IBuddy.OFFLINE in Java is
StatusType.STATUS_OFFLINE in C# and just STATUS_OFFLINE in C++. See IBuddy
javadoc for a description of the enum values.

4.2.2 PrivacyType
IBuddyList fields in Java related to permit modes (user privacy) are grouped in COM as
PrivacyType enum. See IBuddyList javadoc for a description of the enum values.

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 8

4.2.3 BuddyListType
IBuddyList fields in Java related to types of BuddyList are grouped in COM as
BuddyListType enum. See IBuddyList javadoc for a description of the enum values.

4.2.4 MessageFormatType
IClient fields PLAIN_TEXT and RICH_TEXT in Java are used with getPlainTextMode() and
setPlainTextMode(int). In COM, IClient has [get, set] PlainTextMode property. The IClient
fields are grouped as MessageFormatType enum and the RICH_TEXT field is called
MESSAGE_FORMAT_RAW in COM to better describe that the incoming messages are in
their native (raw) format.

4.2.5 ProtocolType
IClient fields in Java related to protocols are grouped in COM as ProtocolType enum. See
IClient javadoc for a description of the enum values.

4.2.6 MessageType
IMessage fields in Java related to types of messages are grouped in COM as
MessageType enum. See IMessage javadoc for a description of the enum values.

4.3 JBuddy, JBuddyClass
In COM, JBuddy represents the application object. It contains all the static methods located
in Javaʼs IClientFactory and IMessageFactory classes.

The IMessageFactory::factory has been renamed to MessageFactory.

There are two IClientFactory::factory replacement methods, ClientFactory and
ClientFactoryEx.

ClientFactory implements all IGateway functionality as native COM events, therefore a
reference to an IGateway implementation does not need to be supplied.

The ClientFactoryEx method was supplied to allow a developer to pass a COM object that
implements an IGateway interface to the client factory. It will forward all callbacks through
the methods defined in the IGateway interface (COM events will also still be fired). Using
IClientFactoryEX and implementing a COM object is beyond the scope of this document.

For .NET, JBuddyClass is the interop wrapper class for JBuddy. It is used in place of
JBuddy.

4.4 IClient, Client
All clients types created from the ClientFactory or ClientFactoryEx implement the IClient
interface. The methods and properties are the same as the Java Docs.

The Client data type is only needed when COM events need to be processed. All client
types can be cast to the Client Type.

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 9

If the ClientFactoryEx is used with a valid IGateway, only IClient will need to be used.

4.5 IGateway
This interface is only needed when you wish to handle all callbacks directly without using
the COMʼs Event ConnectionPoint architecture. A valid COM object needs to be created
that implements the IGateway interface. It should then be passed to ClientFactoryEx to
create one or more clients. The IGateway methods will then be called whenever an IM
event is received.

4.6 Callbacks and Event Handling
Each COM enabled language has a different way to sink COM events. The important thing
to note is that only Client object raise events, not IClient.

A VB6 example of sinking events is:

Private WithEvents oClient as Client

Private Sub oClient_IncomingMessage(oMessage as IMessage)
End Sub

If COM events are not supported or an application needs to create multiple Client objects,
yet only wants one method to handle all events. Then using the IGateway interface would
be a better choice.

The developer will need to create a simple COM object that implements the IGateway
interface. Pass that objectʼs reference to each call to ClientFactoryEx.

4.7 Errors and Exceptions in COM
When an error occurs in the JBuddy dll, it will use the normal COM error handling
procedure to return the error that occurred. However, there is more information available in
the JBuddy.Exceptions collection. It will have an entry in the collection for each function that
was called before the error occurred. There are methods exposed to all your program to all
to the exception list so that an entire stack trace may be built. To process the exceptions,
you may iterate through the collection, or you may call the method
JBuddy.Exceptions.Display(). This method will display a dialog box with the entire stack
trace displayed.

4.8 Troubleshooting
To enable lower level troubleshooting for JBuddy.dll, you can use regedit to add a DWORD
to the registry:

HKEY_LOCAL_MACHINE\Software\Zion\JBuddy\EnableLogging=1

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 10

Once added, new launches of the JBuddy.dll enabled application will create (or append) to
C:\JBuddy.log. Look here when problems occur and you suspect the JBuddy COM/.NET
components may not be loading properly or misconfigured.

JBuddy COM/.NET Getting Started Guide

Copyright 2010 Zion Software, LLC. All Rights Reserved." 11

