JBuddy Bot Framework 2.0

JBuddy Bot Framework™

Users Guide
Version 2.0
2008 - 2012

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

1 Introduction

2 Getting Started
2.1 The Bot Definition File
2.2 Running a Bot
2.3 Testing a Bot
2.4 Debugging a Bot

3 Client Gateways
3.1 Connecting a Bot to IM Networks
3.2 Client Properties
3.3 Password Security
3.3.1 The EncryptPassword Utility
3.3.2 Using Pass Keys
3.4 Custom Client Gateways

4 Targets
4.1 Sending Content and Messages
4.2 Using Parameters
4.2.1 Getting User Input
4.2.2 Validating User Input (with Patterns)
4.3 Sending Files
4.4 Nested Targets

5 Actions
5.1 URL Actions
5.1.1 Files
5.1.2 HTTP Requests
5.2 Java Actions
5.3 System Actions
5.4 XSL Transformations

6 Menus
6.1 Creating Sub-Menus
6.2 Navigating a Menu Hierarchy

7 Event Handlers
7.1 Menu-Local Event Handlers
7.2 Consuming Events

8 Filters
8.1 Include Filters
8.2 Exclude Filters
8.3 Using Patterns In Filters

9 Routes
9.1 Using Routes
9.2 Routes with Client Gateways

JBuddy Bot Framework 2.0

©O oo ~N~N o0 b

- ey ey =k o =
WNDN—w=00

NNOMNNN DO OO = oo e
NNSNoabs, PR OMMNOOOOOOGA N D

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

10 Dynamic Content 28
10.1 Dynamic XML 28
10.2 The Java API 28

11 Available Content Variables 30
11.1 User 30
${name} 30
${displayName} 30
${command} 30
11.2 Client 31
11.3 Statistics 31
11.4 Client Statistics 32

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

1 Introduction

Ever since the dawn of computing, humans have been supplying input to computers
and computers have been responding to human input. Enter Instant Messaging, or IM
as it’s well known: humans communicating in real time to other humans using text mes-
sages. Where is the human input and computer responses in IM? Actually it has been a
growing trend in IM and already has a name - IM Bots. In IM, a Bot is a non-human par-
ticipant in the IM network. Bots can be thought of as just another buddy in your buddy
list, however they are not human.

In May 2007, we released JBuddy Bot Framework version 1.0 and gave software devel-
opers worldwide, a taste at how easy developing an IM Bot could be. Since then, we’ve
been hard at work on the next release. It’s finally here - 2.0! One thing you’ll notice right
away, we didn’t hold back on innovation and new features. Be sure to checkout new
sections of this guide covering the new bot action types for URLs including file and http
and the new Routes feature. Last but certainly not least, you’ll notice a new section
called Custom Client Gateways, which discusses how the JBuddy Bot Framework can
be extended to non-IM messaging systems including SMS, etc, opening up a whole new
world for interactive message application development.

Without further ado, let’s get started!

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

2 Getting Started
2.1 The Bot Definition File

The bot engine processes messages and events from users and sends back responses.
The engine is driven by an XML file called the Bot Definition File.

The Bot Definition File contains markup defining the bot's logic and content. It contains
a top-level <bot> element which looks like this:

<bot xmlns="http://www.zionsoftware.com/jbuddy/bot">
<!-- logic and content goes here -->
</bot>

All elements in the Bot Definition File are part of the
"http://www.zionsoftware.com/jbuddy/bot" namespace.

2.2 Running a Bot

To run a bot, use the Run utility.

The Run utility allows you to run a bot in the background (daemon or service). By de-
fault, it also connects Client Gateways, if available (see the section on "Client Gate-
ways" for more information).

Assuming your Bot Definition File is named "bot.xml", type the following at the com-
mand line from the lib folder of the installation directory:

java -cp Bots.jar Run

If your bot definition file is not named "bot.xml", use the -file or -f argument followed by
the file path. For example, for a file named "mybot.xml", type the following at the com-
mand line:

java -cp Bots.jar Run -file mybot.xml
2.3 Testing a Bot

To test a bot, use the Test utility.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://www.zionsoftware.com/jbuddy/bot
http://www.zionsoftware.com/jbuddy/bot
http://www.zionsoftware.com/jbuddy/bot
http://www.zionsoftware.com/jbuddy/bot

JBuddy Bot Framework 2.0

With the Test utility, you can issue commands to the bot from the command line. By de-
fault, Test mode does not connect Client Gateways. Instead, Test mode creates a local-
only test client that takes input from the command line (stdin). You can use the Test util-
ity to test most of the examples in this guide.

Assuming your Bot Definition File is named "bot.xml", type the following at the com-
mand line from the lib folder of the installation directory:

java -cp Bots.jar Test

If your bot definition file is not named "bot.xml", use the -file or -f argument followed by
the file path. For example, for a file named "mybot.xml", type the following at the com-
mand line:

java -cp Bots.jar Test -file mybot.xml

2.4 Debugging a Bot

To help understand what the bot engine is doing and to help fix potential problems, you
can enable debug logging. This is done by setting the bot's log level. Here, we set the
log level to "all", which prints all log messages to the console, regardless of severity:

<bot xmlns="http://www.zionsoftware.com/jbuddy/bot" logLevel="all">
<!-- logic and content goes here -->
</bot>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://www.zionsoftware.com/jbuddy/bot
http://www.zionsoftware.com/jbuddy/bot

JBuddy Bot Framework 2.0

3 Client Gateways

Client Gateways allow a bot to connect to external networks, such as public or private
Instant Messaging servers. Once a bot is connected to gateways, users on the associ-
ated networks may interact with the bot.

By default, the Run utility connects all client gateways at start and the Test utility does
not. You force client gateways to connect by including the “-connect true” arguments to
Run or Test or prevent the Bot engine from connecting client gateways by including the
“-connect false” arguments to Run or Test.

3.1 Connecting a Bot to IM Networks

To connect a bot to an IM network, use the <client> element in the Bot Definition File. It
must be defined under the top level <bot> element. The following example connects the
bot to the AOL Instant Messenger network:

<client protocol="AIM" name="myaimbot" password="mypassword"/>

(Replace "myaimbot" and "mypassword" with your AIM login information). Once signed
in to AIM, AIM users may send messages to, and interact with, the bot. Multiple gate-
ways can be defined, to connect the bot to several networks simultaneously. Here are
the available network protocols, as provided by the JBuddy SDK:

Public IM:

« AIM - AOL Instant Messenger

- 1CQ - "I Seek You"

« MSN - MSN Messenger (also known as Windows Live Messenger)
« YIM - Yahoo Messenger

Enterprise IM:

- JABBER - Jabber/XMPP

- LCS - Microsoft’s Office Live Communications Server

- SAMETIME - IBM Lotus Sametime

- JSC - Zion Software's JBuddy Message Server

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

You may use the Run utility to run your bot and connect it to the Client Gateways you
defined.

3.2 Client Properties

Special properties can be set in a client definition. These can be used to override similar
entries in the JBuddy SDK's protocol properties files, such as "AlM.properties.” For ex-
ample, we can add a property to tell JBuddy to send a keep-alive message to the server
every 60 seconds from our AIM client:

<client protocol="AIM" name="myaimbot" password="mypassword">
<property name="JBUDDY_AIM_KEEP_ALIVE_INTERVAL" value="60"/>
</client>

3.3 Password Security

As a security measure, to avoid using plain-text passwords in a bot definition, pass-
words can be encrypted.

3.3.1 The EncryptPassword Utility

The utility asks for a password and an optional "pass key.” It returns an encrypted
password string, which may be used in a client definition. Type the following at the
command line, from the lib folder of the installation directory:

java -cp Bots.jar EncryptPassword

You are prompted to enter some values. Here's an example session:

Enter a password: mypassword
Enter a pass key (optional):
The encrypted value is: S5xnFMAER1D@jdfnP5WeA/g==

Now, place the encrypted value in the client definition:

<client protocol="AIM" name="myaimbot" password="5xnFMAER1D@jdfnP5WeA/g=="
passwordEncrypted="true"/>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

Setting passwordEncrypted to "true" tells the bot engine that the password is encrypted,
and needs to be decrypted in order to connect.

3.3.2 Using Pass Keys

Password security can be increased further by introducing a custom pass key that is
used to encrypt the client passwords. Here is an example EncryptPassword session
with a custom pass key:

Enter a password: mypassword
Enter a pass key (optional): mypasskey
The encrypted value is: 24Qw@20G/TzpZdKOrnnydg==

Note that the encrypted value is now different from the earlier example, which did NOT
use a pass key. Place the encrypted value in the client definition as usual:

<client protocol="AIM" name="myaimbot" password="24Qw@20G/TzpZdKOrnnydg=="
passwordEncrypted="true"/>

You must specify the custom pass key to the Run utility in order for the engine to prop-
erly decrypt passwords. To run the previous example with the new pass key, type the
following at the command line:

java -cp Bots.jar Run -passkey mypasskey

3.4 Custom Client Gateways

The Bot Framework is extensible, allowing you to connect a bot to networks not already
supported by the JBuddy SDK. The Java class "com.zion.jbuddy.bots.BotGateway" is
provided, and can be extended to create a custom Client Gateway implementation. The
following example might be used to add SMS (mobile text message) support to a bot,
where the fictional "com.acme.bots.SMSGateway" class extends the BotGateway class:

<client protocol="SMS" gateway(Class="com.acme.bots.SMSGateway">
<property name="shortCode" value="12345"/>
</client>

For more information, see the javadocs provided with the framework.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

4 Targets

Targets are tasks carried out by a bot in response to an event, such as a message from
a user. They can be used to send messages or files to the user, carry out actions, and
more. A target is defined under the <bot> element, like this:

<target command="SOME_COMMAND">
<title>SOME_TITLE</title>
<!-- define messages, files, etc here -->
</target>

The command is a one-word command issued by a user (human or non-human) which
triggers this target. The title is used to describe this target within menus (see the section
on menus for more information).

4.1 Sending Content and Messages

In this example, we have an "about" target that provides some simple content to the
user:

<target command="about">
<title>About This Bot</title>
<content>This is a test bot built by <i>Zion Software</i>
to show the capabilities of the
<i>JBuddy Bot Framework</i>.</content>
</target>

Now, when a user types "about", the content ("This is a test bot...") is sent to them in the
form of an instant message. Content may contain HTML-like markup which is parsed by
the bot engine and shown as rich text. Supported HTML tags include (bold), <i>
(italic), <u> (underline), <s> (strike-through), , <sup> (superscript), <sub> (sub-
script), and <a> (hyperlink). A <message> element can also be used to send a mes-
sage. The previous example can be rewritten as follows:

<target command="about">
<title>About This Bot</title>
<message type="IM">This is a test bot built by
<i>Zion Software</i> to show the capabilities of the
<1>JBuddy Bot Framework</i>.</message>
</target>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

Recipients can also be specified in a message, using a comma-delimited list of user
names. The above example can be modified to send the "about" info to users other than
the one who typed the command (in this case, to both "adam" and "joe"):

<target command="about">
<title>About This Bot</title>
<message type="IM" recipients="adam,joe">This is a test bot built by
<i>Zion Software</i> to show the capabilities of the
<1>JBuddy Bot Framework</i>.</message>
</target>

Note the differences between <content> and <message>. <content> is used to send
simple instant message replies. Multiple, successive <content> elements are combined
into a single instant message to the user, and recipients cannot be specified.

4.2 Using Parameters

Parameters can be used to ask a user for input. The user's input can be used later by
the engine in various ways.

4.2.1 Getting User Input

The following example asks the user for his or her birth date:

<target command="birth">
<title>Enter Your Birth Date</title>
<parameter name="date">
<description>Please enter your birth date (MM/DD/YYYY):</description>
</parameter>
<content>You entered: ${date}</content>
</target>

If a user types "birth", the parameter's description is displayed to the user. The value en-
tered by the user is saved as the "date" parameter value. A message is then sent back,
confirming the date the user entered. (${date} is an example of a content variable. The
engine replaces ${date} with the value of the "date" parameter).

Here is an example session:

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

User: birth

Bot: Please enter your birth date (MM/DD/YYYY):
User: 04/15/1980

Bot: You entered: 04/15/1980

The user can also choose not to enter a value, canceling execution of the parameter
(and its target) by simply typing "cancel.”

4.2.2 Validating User Input (with Patterns)

The previous example can be improved to validate the user's input, only accepting a
value from the user if it matches a specified pattern:

<target command="birth">
<title>Enter Your Birth Date</title>
<parameter name="date" pattern="\d{2}/\d{2}/\d{4}">
<description>Please enter your birth date (MM/DD/YYYY):</description>
</parameter>
<content>You entered: ${date}</content>
</target>

The pattern is a regular expression. It matches 2 digits (the month), followed by a for-
ward slash, followed by 2 digits (the day), followed by a forward slash, followed by 4 dig-
its (the year).

Here is an example session:

User: birth
Bot: Please enter your birth date (MM/DD/YYYY):
User: april 15 1980
Bot: Invalid input.

Please enter your birth date (MM/DD/YYYY):
User: 04/15/1980
Bot: You entered: 04/15/1980

4.3 Sending Files

Files can also be sent to the user. The following example creates a "file" target that
sends a file named "test.qgif":

<target command="file">

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

<title>Request a File</title>
<file path="test.gif">
<description>Hey ${displayName},
Please accept this image.</description>
</file>
</target>

${displayName} is another example of a content variable. The engine replaces this vari-
able with the value of the user's display name. Also, like messages, recipients can be
specified:

<target command="file">
<title>Request a File</title>
<file path="test.gif" recipients="adam, joe">
<description>Hey ${displayName},
Please accept this image.</description>
</file>
</target>

4.4 Nested Targets

Targets can call other targets.

Consider the following target:

<target command="nested">
<content>Here is some content.</content>
<target ref="about"/>
<content>Here is some more content.</content>
</target>

If a user submits "nested", the bot sends the following message:

Here is some content.

This is a test bot built by <i>Zion Software</i>
to show the capabilities of the
<1>JBuddy Bot Framework</i>.

Here is some more content.

Note the use of the "ref" attribute. It is used to reference the existing "about" target by its
command name.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

5 Actions

Actions are external processes carried out by the bot engine. They can be used to exe-
cute HTTP (web) requests, call Java-based tasks, execute a system call, or more.

5.1 URL Actions

URL actions process content from a local or fully qualified URL (Uniform Resource Lo-
cator). The bot engine supports URL protocols provided by the underlying Java Runtime
Environment (JRE), such as “file”, “http”, “https”, and more.

5.1.1 Files

The bot engine can retrieve content from a local file.
Here is an example:

<target command="about">
<action type="url" path="about.html"/>
</target>

If a user submits "about", the contents of the local file "about.html" are parsed and sent
to the user. The bot engine understands many basic HTML tags, such as styles, bold,
font, and more.

5.1.2 HTTP Requests

HTTP requests can be used to retrieve web content or invoke web services. Here’s an
example of a URL action using HTTP:

Here's an example of an HTTP action:

<target command="navaltime">
<title>View the Current USNO Master Time</title>
<action type="url"
path="http://tycho.usno.navy.mil/cgi-bin/timer.pl"/>
</target>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://tycho.usno.navy.mil/cgi-bin/timer.pl
http://tycho.usno.navy.mil/cgi-bin/timer.pl

JBuddy Bot Framework 2.0

If a user submits "navaltime", the contents of

<http://tycho.usno.navy.mil/cgi-bin/timer.pl> are parsed as HTML and sent to the user.

The HTTP method can be set to “get” or “post”, among other options.

If parameters are specified in the target, the name/value pair are sent within the re-
quest. For GET requests, they are embedded in the URL’s query string. For other re-
quests such as POST, they are sent as “application/x-www-form-urlencoded” content.

5.2 Java Actions

A Java action loads and executes an external Java class. The class must extend the
abstract com.zion.jbuddy.bots.BotActionTask class. Here's an example of a Java action:

<target command="java">
<title>A Java Action</title>
<parameter name="firstname">
<description>Enter your first name:</description>
</parameter>
<action type="java" path="MyActionTask"/>
</target>

Here is the code for MyActionTask.java:

import java.util.*;
import com.zion.jbuddy.bots.*;

/**
* An example action task.
*/
public class MyActionTask extends BotActionTask {

public Object execute() {
return "Hi there, " + parameters.get("firstname");

}

Parameter values are saved in the parameters Map attached to the BotActionTask. The
content returned from the execute method is sent to the user as an instant message,
similar to a <content> element. Here is an example session:

User: java
Bot: Enter your first name:

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://tycho.usno.navy.mil/cgi-bin/timer.pl
http://tycho.usno.navy.mil/cgi-bin/timer.pl

JBuddy Bot Framework 2.0

User: Bob
Bot: Hi there, Bob!

5.3 System Actions

A system action calls a system command or executable file. The results of the command
are returned to the user. Here's an example of a system action:

<target command="ping">
<title>Ping an Address</title>
<parameter name="address">
<description>Please enter an address to ping.</description>
</parameter>
<action type="system" path="ping ${address}"/>
</target>

If a user types "ping", the bot asks the user to enter a value for "address.” After the user
enters the address, the system "ping" command is called. The address value is passed
to the ping command (the content variable ${address} is replaced with the parameter's
value). Finally, the results of the ping command are sent to the user in an instant
message.The results could also be saved to a file, which is then sent to the user:

<target command="ping">
<title>Ping an Address</title>
<parameter name="address">
<description>Please enter an address to ping.</description>
</parameter>
<action type="system" path="ping ${address}" resultType="file"/>
</target>

The "resultType" attribute dictates what type of content is sent to the user (in this case,
a file).

5.4 XSL Transformations

XSL Transformations (XSLT) can be used to dynamically transform content. An XSLT
template can be defined (using pure XML) that transforms XML or HTML input into an-
other form.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

Consider the following example:

<target command="weather">

<action type="url" path="http://www.somehost.com/current_weather.html"
transform="weather.xsl" resultType="xhtml"/>
</target>

If a user types "weather", information about the current weather conditions is retrieved
from <http://www.somehost.com/current_weather.html>. The HTML content is trans-
formed using the local "weather.xsl" template. The XSLT output is then parsed as
XHTML content and sent to the user.

Most HTML content (especially content on the web) is not valid XML. To rectify this, the
bot engine knows how to convert HTML content into valid XML if necessary (using
HTML Tidy), so it can be processed using XSLT.

For more information on XSLT, see <http://www.w3.org/TR/xslt>, or the demos provided
with the framework.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://www.somehost.com/current_weather.html
http://www.somehost.com/current_weather.html
http://www.somehost.com/current_weather.html
http://www.somehost.com/current_weather.html
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt

JBuddy Bot Framework 2.0

6 Menus

Menus are used to organize targets (and other menus) into a menu hierarchy. When a
user opens a menu, its available targets and sub-menus are presented to the user.
Menus are defined under the top-level <bot> element. Here is an example of a simple
menu:

<menu command="options">
<title>0Options Menu</title>
<description>Here are the available options.</description>
<target command="ping">
<title>Ping an Address</title>
<parameter name="address">
<description>Please enter an address to ping.</description>
</parameter>
<action type="system" path="ping ${address}" resultType="file"/>
</target>
<target command="about">
<title>About This Bot</title>
<content>This is a test bot built by
<i>Zion Software</i> to show the capabilities of the
<i>JBuddy Bot Framework</i>.</content>
</target>
</menu>

Here is an example session:

User: options
Bot: Options Menu

Here are the available options.

ping - Ping an Address
about - About This Bot

The menu displays its available target commands and their descriptive titles. The tar-
gets from earlier examples are now available within this menu. After loading this menu,
the user can use the "about" and "ping" commands. Here is an example session:

User: options
Bot: Options Menu

Here are the available options.

ping - Ping an Address

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

about - About This Bot
User: ping
Bot: Please enter an address to ping.

Remember that targets can also be referenced from other targets. The previous exam-
ple can be rewritten using references:

<menu command="options">
<title>Options Menu</title>
<description>Here are the available options.</description>
<target ref="ping"/>
<target ref="about"/>
</menu>

For the references to work, the "ping" and "about" targets must be defined under <bot>,
like in the earlier examples.

6.1 Creating Sub-Menus

Menus can be defined under other menus, creating sub-menus. The following example
adds an "actions" sub-menu to "options":

<menu command="options">
<title>0Options Menu</title>
<description>Here are the available options.</description>
<target ref="ping"/>
<target ref="about"/>
<menu command="actions">
<title>Actions Menu</title>
<description>Here are the available actions.</description>
<target ref="java"/>
<target ref="system"/>
</menu>
</menu>

Like targets, menus can also be referenced. The above example can be rewritten using
references. In this example, "actions" is a top-level menu, but can also be found as a
sub-menu of "options.”

<menu command="actions">
<title>Actions Menu</title>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

<description>Here are the available actions.</description>
<target ref="java"/>
<target ref="system"/>

</menu>

<menu command="options">
<title>Options Menu</title>
<description>Here are the available options.</description>
<target ref="ping"/>
<target ref="about"/>
<menu ref="actions"/>
</menu>

6.2 Navigating a Menu Hierarchy

Using the earlier examples, the user may navigate the menu hierarchy. Here is an ex-
ample session:

User: options
Bot: Options Menu

Here are the available options.

ping - Ping an Address
about - About This Bot
actions - Actions Menu
User: actions
Bot: Actions Menu

Here are the available actions.

java - A Java Action
system - A System Action
back - Back to Options Menu

Note that the "actions" sub-menu contains a selection that wasn't defined before:
"back.” The "back" command is automatically available when a user navigates to a new
menu while viewing another. Here is an example session, illustrating the "back" com-
mand:

User: options
Bot: Options Menu

Here are the available options.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

User:
Bot:

User:
Bot:

ping - Ping an Address
about - About This Bot
actions - Actions Menu
actions

Actions Menu

JBuddy Bot Framework 2.0

Here are the available actions.

java - A Java Action

system - A System Action

back - Back to Options Menu

back
Options Menu

Here are the available options.

ping - Ping an Address
about - About This Bot
actions - Actions Menu

Another built-in command, "refresh", can be used to show the last menu the user navi-

gated to:
User: options
Bot: Options Menu

User:
Bot:

Here are the available options.

ping - Ping an Address
about - About This Bot
actions - Actions Menu
refresh

Options Menu

Here are the available options.

ping - Ping an Address
about - About This Bot
actions - Actions Menu

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

7 Event Handlers

Event handlers are similar to targets, but instead of being triggered by user commands,
they are triggered in response to certain events, such as a user message or status
change.The <eventHandler> element is defined under the <bot> element, just like tar-
gets and menus. In the following example, an event handler is triggered when a user
sends a message to the bot:

<eventHandler type="message">
<content>Hey! You just sent me a message.</content>
</eventHandler>

Note that the message may be an IM, a typing notification, or more. Event handlers can
also be called in response to presence updates (such as when a user changes their
status):

<eventHandler type="presence">
<content>I just received your presence update!</message>
</eventHandler>

Now, when the bot receives a presence update from a user on its buddy list, it sends
them an instant message.

7.1 Menu-Local Event Handlers

Event handlers can be defined directly within menus. A menu-local event handler can
only be triggered when the user is viewing the menu it is contained in. For example, we
can define a menu-local event handler in the "options" menu we defined earlier:

<menu command="options">
<title>Options Menu</title>
<description>Here are the available options.</description>
<target ref="ping"/>
<target ref="about"/>
<menu ref="actions"/>
<eventHandler type="message">
<content>Hey! You just sent Options Menu a message.</content>
</eventHandler>
</menu>

Now, if a user types "options", and then types any message, the bot will send a mes-
sage back. Here is an example session:

User: options

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

Bot: Options Menu
Here are the available options.

ping - Ping an Address
about - About This Bot
actions - Actions Menu
User: hi
Bot: Hey! You just sent Options Menu a message.

7.2 Consuming Events

Normally, when an event occurs, the bot engine will try to trigger each associated event
handler, in order. If you'd like an event handler to prevent the engine from triggering
more event handlers for the same event, you can "consume" the event. Take the follow-
ing example:

<eventHandler type="message" consume="true">
<content>Hello there!</content>
</eventHandler>

<eventHandler type="message">
<content>Hello there! (You won't see this!)</content>
</eventHandler>

If a user types a message, the bot triggers the first event handler, but since the event is
consumed there, the second event handler is NOT triggered. The engine processes
event handlers first, and then if the event was an IM message, it processes user com-
mands. Therefore if an event is consumed, it will not trigger any further event handlers,
targets, or menus.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

8 Filters

Filters can be used to restrict a <target>, <menu>, or <eventHandler> to certain users
or properties. Each of these elements may contain a <filters> element that represents a
set of filters.

8.1 Include Filters

An include filter allows only users or events that match the filter. If any include filters are
defined, at least one of them must match for the target or event handler to be triggered.
For example, an include filter could be used to create an event handler that responds to
IM type messages, ignoring all other types of messages:

<eventHandler type="message">
<filters>
<include messageType="IM"/>
</filters>
<content>Hey! You just sent me an IM.</content>
</eventHandler>

A more powerful example is an event handler that automatically accepts buddy authori-
zation requests on the Yahoo Messenger network:

<eventHandler type="message">
<filters>
<include protocol="YIM" messageType="AUTH_REQUEST"/>
</filters>
<message type="AUTH_ACCEPT"/>
<content>Thanks for adding me to your buddy list!</content>
</eventHandler>

Filters may apply to presence event handlers. The following example sends a message
to users on the bot's buddy list when they are BUSY:

<eventHandler type="presence">

<filters>
<include status="BUSY"/>
</filters>
<content>I can see that you are busy!</content>
</event>

Filters apply to targets and menus, too. The following example creates an "about" target
that is only available to users using the JABBER protocol:

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

<target command="about">
<title>About Jabber</title>

<filters>
<include protocol="JABBER"/>
</filters>
<content>You are using the Jabber protocol!</content>
</target>

You can also define multiple similar targets with separate filters. The first target that is
allowed will be triggered. The following example defines an "about" command that re-
turns a different target depending if a user is on AOL Instant Messenger, MSN Messen-
ger, or Yahoo Messenger:

<target command="about">
<title>About AOL Instant Messenger</title>

<filters>
<include protocol="AIM"/>
</filters>
<content>You are using AOL Instant Messenger!</content>
</target>

<target command="about">
<title>About MSN Messenger</title>

<filters>
<include protocol="MSN"/>
</filters>
<content>You are using MSN Messenger!</content>
</target>

<target command="about">
<title>About Yahoo Messenger</title>

<filters>
<include protocol="YIM"/>
</filters>
<content>You are using Yahoo Messenger!</content>
</target>

8.2 Exclude Filters

An exclude filter tells the engine NOT to allow users or events that match the filter. The
following example sends a response message to users, but only if they are NOT using
the JABBER protocol:

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

<eventHandler type="message">
<filters>
<include messageType="IM"/>
<exclude protocol="JABBER"/>
</filters>
<content>Hey! You just sent me an IM.</content>
</eventHandler>

We could also hide the actions menu from JABBER users:

<menu command="actions">
<title>Actions Menu</title>
<description>Here are the available actions.</description>
<filters>
<exclude protocol="JABBER"/>
</filters>
<target ref="java"/>
<target ref="system"/>
</menu>

8.3 Using Patterns In Filters

Powerful regular expression patterns can be used anywhere in a filter. For example, we
can make the bot send a response message to users on the "jabber.org" Jabber server
only:

<eventHandler type="message">

<filters>
<include messageType="IM" protocol="JABBER" user=".*@jabber\.org"/>
</filters>
<content>Hey! You just sent me an IM.</content>
</eventHandler>

Note the value of the "user" attribute. It is a regular expression meaning (one or more
characters followed by "@jabber.org").

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

9 Routes

Routes are used to direct responses to other users or client gateways.

9.1 Using Routes

A single route represents a sender (client) and recipients (users) to direct responses to.
One or more routes can be specified on a target, menu, or event handler. In this exam-
ple, we create a simple route:

<target command="test">
<routes>
<route recipients="someuser,someotheruser"/>
</routes>
<content>Hello!</content>
</target>

If a user submits "test", the bot sends a "Hello!" message to "someuser" and "someo-
theruser", using the same gateway as the initial user.

9.2 Routes with Client Gateways

Routes can also be used to send responses to users on other gateways. Each gateway
is assigned an ID, which can be used to specify a route sender. By default, the ID is
equal to "name#protocol", where "name" is the client's name and "protocol" is the proto-
col being used. The following gateway's ID is "myaimbot#AIM":

<client protocol="AIM" name="myaimbot" password="mypassword"/>

The simple route example can then be modified to send to users on AIM:

<target command="test">

<routes>
<route sender="myaimbot#AIM" recipients="someuser,someotheruser"/>
</routes>
<content>Hello!</content>
</target>

A custom ID can also be specified using the "id" attribute:

<client protocol="AIM" name="myaimbot" password="mypassword" id="aim"/>

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

10 Dynamic Content

Dynamic features can be added to a bot.

10.1 Dynamic XML

Raw bot definition elements can be returned from an action. The XML is parsed and
processed by the engine on-the-fly, thus creating dynamic content. In this example, we
create a Java action that returns a menu using dynamic XML. Here is the target that
calls the Java action:

<target command="dynamicmenu">

<title>Create a Dynamic Menu</title>

<action type="java" path="DynamicMenuTask" resultType="xml"/>
</target>

Setting the action resultType to "xml" tells the engine that the action returns dynamic
XML that needs to be processed. Here is the source code for "DynamicMenuTask.java":

import com.zion.jbuddy.bots.*;
public class DynamicMenuTask extends BotActionTask {

public Object execute() {
return "<menu xmlns="http://www.zionsoftware.com/jbuddy/bot"'>"
+ " <title>A Dynamic Menu</title>"
<menu ref="options'/>"
<target ref="about'/>"

"</menu>";

+
+
+

Note that all features available in the bot definition XML are available dynamically, in-
cluding target and menu references.

10.2 The Java API

A complete Java APl is included with the framework that can also be used to create dy-
namic content.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

http://www.zionsoftware.com/jbuddy/bot'
http://www.zionsoftware.com/jbuddy/bot'

JBuddy Bot Framework 2.0

We can rewrite the previous example's source code to build the dynamic menu using
pure Java code, instead of XML.:

import com.zion.jbuddy.bots.*;
import com.zion.jbuddy.richcontent.RichContent;

public class DynamicMenuTask extends BotActionTask {

public Object execute() {
BotMenu menu = new BotMenu();
RichContent titleContent = new RichContent();
titleContent.append("A Dynamic Menu");
menu.setTitle(titleContent);

BotEngine engine = user.getClient().getEngine();

BotTarget optionsMenu = engine.getTargets().getByID("options");
menu.getTargets().add(optionsMenu);

BotTarget aboutTarget = engine.getTargets().getByID("about");

menu.getTargets().add(aboutTarget);
return menu;

For more information on using the Java API, consult the related examples and the java-
docs included with the framework.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

11 Available Content Variables

These are the content variables that can be used within element content and certain at-
tributes.

11.1 User

These variables apply to the user.

${protocol}
The user's protocol.

${name}
The user's name.

${displayName}
The user's display name.

${command}
The command the user entered (if any).

${commandValue}

The command value entered by the user (if any). The command value is everything en-
tered after the command name.

${messageType}
The type of message the user entered (if any).

${message}
The message contents the user entered (if any).

${status}
The user's status.

${statusMessage}
The user's status message.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

11.2 Client

These variables apply to the user's associated client gateway.

${client.protocol}
The client's protocol.

${client.name}
The client's name.

${client.displayName}
The client's display name.

${client.id}
The client's ID.

${client.status}
The client's status.

${client.statusMessage}
The client's status message.

11.3 Statistics

These variables apply to the bot engine.

${statistics.sessions}
The current number of user sessions.

${statistics.peakSessions}
The peak (highest) number of concurrent user sessions that occurred since the engine
was started.

${statistics.totalSessions}
The total number of user sessions handled since the engine was started.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

JBuddy Bot Framework 2.0

${statistics.uniqueSessions}
The number of unique user sessions handled in the last 24 hours since the engine was
started.

${statistics.sentMessages?}
The number of messages sent since the engine was started.

${statistics.receivedMessages}
The number of messages received since the engine was started.

11.4 Client Statistics

These variables apply to the user's associated client gateway.

${client.statistics.sessions}
The current number of user sessions.

${client.statistics.peakSessions}
The peak (highest) number of concurrent user sessions that occurred since the engine
was started.

${client.statistics.totalSessions}
The total number of user sessions handled since the engine was started.

${client.statistics.uniqueSessions}
The number of unique user sessions handled in the last 24 hours since the engine was
started.

${client.statistics.sentMessages}
The number of messages sent since the engine was started.

${client.statistics.receivedMessages}
The number of messages received since the engine was started.

Copyright 2007-2012, Zion Software, LLC. All Rights Reserved.

